Unsupervised bivariate data clustering for damage assessment of carbon fiber composite laminates

Author:

May Zazilah,Alam M. K.ORCID,Mahmud Muhammad Shazwan,Rahman Noor A’in A.

Abstract

Damage assessment is a key element in structural health monitoring of various industrial applications to understand well and predict the response of the material. The big uncertainty in carbon fiber composite materials response is because of variability in the initiation and propagation of damage. Developing advanced tools to design with composite materials, methods for characterizing several damage modes during operation are required. While there is a significant amount of work on the analysis of acoustic emission (AE) from different composite materials and many loading cases, this research focuses on applying an unsupervised clustering method for separating AE data into several groups with distinct evolution. In this paper, we develop an adaptive sampling and unsupervised bivariate data clustering techniques to characterize the several damage initiations of a composite structure in different lay-ups. An adaptive sampling technique pre-processes the AE features and eliminates redundant AE data samples. The reduction of unnecessary AE data depends on the requirements of the proposed bivariate data clustering technique. The bivariate data clustering technique groups the AE data (dependent variable) with respect to the mechanical data (independent variable) to assess the damage of the composite structure. Tensile experiments on carbon fiber reinforced composite laminates (CFRP) in different orientations are carried out to collect mechanical and AE data and demonstrate the damage modes. Based on the mechanical stress-strain data, the results show the dominant damage regions in different lay-ups of specimens and the definition of the different states of damage. In addition, the states of the damage are observed using Scanning Electron Microscope (SEM) analysis. Based on the AE data, the results show that the strong linear correlation between AE and mechanical energy, and the classification of various modes of damage in all lay-ups of specimens forming clusters of AE energy with respect to the mechanical energy. Furthermore, the validation of the cluster-based characterization and improvement of the sensitivity of the damage modes classification are observed by the combined knowledge of AE and mechanical energy and time-frequency spectrum analysis.

Funder

Universiti Teknologi Petronas

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference21 articles.

1. Onset of resin micro-cracks in unidirectional glass fiber laminates with integrated SHM sensors: numerical analysis;Y Huang;Structural Health Monitoring,2009

2. Experimental study on the damage of granite by acoustic emission after cyclic heating and cooling with circulating water;D Zhu;Processes,2018

3. On the limits of acoustic emission detectability for twinning;A Vinogradov;Materials Letters,2016

4. Study on Acoustic Emission Localization of Concrete Using Modified Velocity;J Li;Advances in Civil Engineering,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio‐Composite Structural Durability;Uncertainty and Artificial Intelligence;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3