Machine learning predicts and provides insights into milk acidification rates of Lactococcus lactis

Author:

Karlsen Signe TangORCID,Vesth Tammi Camilla,Oregaard Gunnar,Poulsen Vera Kuzina,Lund Ole,Henderson Gemma,Bælum Jacob

Abstract

Lactococcus lactis strains are important components in industrial starter cultures for cheese manufacturing. They have many strain-dependent properties, which affect the final product. Here, we explored the use of machine learning to create systematic, high-throughput screening methods for these properties. Fast acidification of milk is such a strain-dependent property. To predict the maximum hourly acidification rate (Vmax), we trained Random Forest (RF) models on four different genomic representations: Presence/absence of gene families, counts of Pfam domains, the 8 nucleotide long subsequences of their DNA (8-mers), and the 9 nucleotide long subsequences of their DNA (9-mers). Vmax was measured at different temperatures, volumes, and in the presence or absence of yeast extract. These conditions were added as features in each RF model. The four models were trained on 257 strains, and the correlation between the measured Vmax and the predicted Vmax was evaluated with Pearson Correlation Coefficients (PC) on a separate dataset of 85 strains. The models all had high PC scores: 0.83 (gene presence/absence model), 0.84 (Pfam domain model), 0.76 (8-mer model), and 0.85 (9-mer model). The models all based their predictions on relevant genetic features and showed consensus on systems for lactose metabolism, degradation of casein, and pH stress response. Each model also predicted a set of features not found by the other models.

Funder

Innovationsfonden

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Starter cultures: general aspects;E Parente;Cheese: chemistry, physics and microbiology,2004

2. High-throughput screening for texturing Lactococcus strains;VK Poulsen;FEMS microbiology letters,2019

3. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing;E Zankari;Journal of Antimicrobial Chemotherapy,2012

4. From genomes to phenotypes: Traitar, the microbial trait analyzer;A Weimann;MSystems,2016

5. Antimicrobial resistance prediction in PATRIC and RAST;JJ Davis;Scientific reports,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3