Converting melanoma-associated fibroblasts into a tumor-suppressive phenotype by increasing intracellular Notch1 pathway activity

Author:

Shao Hongwei,Moller Mecker,Cai Long,Prokupets Rochelle,Yang Cuixia,Costa Connor,Yu Kerstin,Le Nga,Liu Zhao-JunORCID

Abstract

Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression, drug resistance and tumor recurrence. We have recently shown that the Notch pathway determines the tumor-regulatory role of experimentally created ‘CAFs’. Here, we examined the status of Notch signaling in human melanoma-associated fibroblasts (MAFs) versus their normal counterparts and tested whether manipulation of the Notch pathway activity in MAFs alters their tumor-regulatory function. Using tissue microarrays, we found that MAFs exhibit decreased Notch pathway activity compared with normal fibroblasts in adjacent and non-adjacent skin. Consistently, MAFs isolated from human metastatic melanoma exhibited lower Notch activity than did normal human fibroblasts, demonstrating that Notch pathway activity is low in MAFs. We then investigated the effect of increasing Notch pathway activity in MAF on melanoma growth in co-cultures and in a mouse co-graft model. We found that activation of the Notch pathway in MAFs significantly restricted melanoma cell growth in vitro and suppressed melanoma skin growth and tumor angiogenesis in vivo. Our study demonstrates that the Notch signaling is inhibited in MAFs. Increase of Notch pathway activity can confer tumor-suppressive function on MAFs. Thus, targeting melanoma by activating Notch signaling in MAF may represent a novel therapeutic approach.

Funder

Bankhead-Coley Foundation

Women’s Cancer Association and internal funds from the University of Miami

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3