Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning

Author:

Shuldiner Scott R.,Boland Michael V.,Ramulu Pradeep Y.,De Moraes C. Gustavo,Elze Tobias,Myers Jonathan,Pasquale Louis,Wellik Sarah,Yohannan JithinORCID

Abstract

Objective To assess whether machine learning algorithms (MLA) can predict eyes that will undergo rapid glaucoma progression based on an initial visual field (VF) test. Design Retrospective analysis of longitudinal data. Subjects 175,786 VFs (22,925 initial VFs) from 14,217 patients who completed ≥5 reliable VFs at academic glaucoma centers were included. Methods Summary measures and reliability metrics from the initial VF and age were used to train MLA designed to predict the likelihood of rapid progression. Additionally, the neural network model was trained with point-wise threshold data in addition to summary measures, reliability metrics and age. 80% of eyes were used for a training set and 20% were used as a test set. MLA test set performance was assessed using the area under the receiver operating curve (AUC). Performance of models trained on initial VF data alone was compared to performance of models trained on data from the first two VFs. Main outcome measures Accuracy in predicting future rapid progression defined as MD worsening more than 1 dB/year. Results 1,968 eyes (8.6%) underwent rapid progression. The support vector machine model (AUC 0.72 [95% CI 0.70–0.75]) most accurately predicted rapid progression when trained on initial VF data. Artificial neural network, random forest, logistic regression and naïve Bayes classifiers produced AUC of 0.72, 0.70, 0.69, 0.68 respectively. Models trained on data from the first two VFs performed no better than top models trained on the initial VF alone. Based on the odds ratio (OR) from logistic regression and variable importance plots from the random forest model, older age (OR: 1.41 per 10 year increment [95% CI: 1.34 to 1.08]) and higher pattern standard deviation (OR: 1.31 per 5-dB increment [95% CI: 1.18 to 1.46]) were the variables in the initial VF most strongly associated with rapid progression. Conclusions MLA can be used to predict eyes at risk for rapid progression with modest accuracy based on an initial VF test. Incorporating additional clinical data to the current model may offer opportunities to predict patients most likely to rapidly progress with even greater accuracy.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. The Advanced Glaucoma Intervention Study (AGIS): 1. Study design and methods and baseline characteristics of study patients;F Ederer;Control Clin Trials,1994

2. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients;DC Musch;Ophthalmology,1999

3. Glaucoma Hemifield Test. Automated visual field evaluation;P Asman;Arch Ophthalmol,1992

4. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes;DB Henson;Invest Ophthalmol Vis Sci,2000

5. Long-term perimetric fluctuation in patients with different stages of glaucoma;P Fogagnolo;Br J Ophthalmol,2011

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3