Abstract
The Ten Eleven Translocation 1 (TET1) gene encodes an epigenetic modifying molecule that is involved in demethylation of 5-methylcytosine. In hematological malignancies, loss-of-function mutations of TET2, which is one of the TET family genes including TET1, are frequently found, while the mutations of TET1 are not. However, clinical studies have revealed that TET1 is highly expressed in some cases of the hematological malignancies including acute myeloid leukemia. Indeed, studies by mouse models using conventional Tet1 knockout mice demonstrated that Tet1 is involved in myeloid leukemogenesis by Mixed Lineage Leukemia (MLL) fusion gene or TET2 mutant. Meanwhile, the other study showed that Tet1 is highly expressed in hematopoietic stem cells (HSCs), and that deletion of Tet1 in HSCs enhances potential self-renewal capacity, which is potentially associated with myeloid leukemogenesis. To examine the role of Tet1 in myeloid leukemogenesis more precisely, we generated novel conditional Tet1-knockout mice, which were used to generate the compound mutant mice by crossing with the inducible MLL-ENL transgenic mice that we developed previously. The leukemic immortalization in vitro was not critically affected by conditional ablation of Tet1 in HSCs with the induced expression of MLL-ENL or in hematopoietic progenitor cells retrovirally transduced with MLL-ENL. In addition, the leukemic phenotypes caused by the induced expression of MLL-ENL in vivo was not also critically affected in the compound mutant mouse model by conditional ablation of Tet1, although we found that the expression of Evi1, which is one of critical target genes of MLL fusion gene, in tumor cells was remarkably low under Tet1-ablated condition. These results revealed that Tet1 was dispensable for the myeloid leukemogenesis by MLL-ENL, suggesting that the therapeutic application of Tet1 inhibition may need careful assessment.
Funder
Ministry of Education, Culture, Sports, Science, and Technology
Sanikai
Publisher
Public Library of Science (PLoS)
Reference35 articles.
1. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals;R Jaenisch;Nat Genet,2003
2. The roles of DNA, RNA and histone methylation in ageing and cancer;EM Michalak;Nat Rev Mol Cell Biol,2019
3. Epigenetic plasticity and the hallmarks of cancer;WA Flavahan;Science,2017
4. The interplay of epigenetic marks during stem cell differentiation and development;Y Atlasi;Nat Rev Genet,2017
5. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23).;R Ono;Cancer Res,2002
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献