High ELF4 expression in human cancers is associated with worse disease outcomes and increased resistance to anticancer drugs

Author:

Kafita DorisORCID,Daka Victor,Nkhoma Panji,Zulu Mildred,Zulu Ephraim,Tembo Rabecca,Ngwira Zifa,Mwaba Florence,Sinkala Musalula,Munsaka SodyORCID

Abstract

The malignant phenotype of tumour cells is fuelled by changes in the expression of various transcription factors, including some of the well-studied proteins such as p53 and Myc. Despite significant progress made, little is known about several other transcription factors, including ELF4, and how they help shape the oncogenic processes in cancer cells. To this end, we performed a bioinformatics analysis to facilitate a detailed understanding of how the expression variations of ELF4 in human cancers are related to disease outcomes and the cancer cell drug responses. Here, using ELF4 mRNA expression data of 9,350 samples from the Cancer Genome Atlas pan-cancer project, we identify two groups of patient’s tumours: those that expressed high ELF4 transcripts and those that expressed low ELF4 transcripts across 32 different human cancers. We uncover that patients segregated into these two groups are associated with different clinical outcomes. Further, we find that tumours that express high ELF4 mRNA levels tend to be of a higher-grade, afflict a significantly older patient population and have a significantly higher mutation burden. By analysing dose-response profiles to 397 anti-cancer drugs of 612 well-characterised human cancer cell lines, we discover that cell lines that expressed high ELF4 mRNA transcript are significantly less responsive to 129 anti-cancer drugs, and only significantly more response to three drugs: dasatinib, WH-4-023, and Ponatinib, all of which remarkably target the proto-oncogene tyrosine-protein kinase SRC and tyrosine-protein kinase ABL1. Collectively our analyses have shown that, across the 32 different human cancers, the patients afflicted with tumours that overexpress ELF4 tended to have a more aggressive disease that is also is more likely more refractory to most anti-cancer drugs, a finding upon which we could devise novel categorisation of patient tumours, treatment, and prognostic strategies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference60 articles.

1. The Emerging Hallmarks of Cancer Metabolism;NN Pavlova;Cell Metab,2016

2. Roles and regulations of the ETS transcription factor ELF4/MEF;MA Suico;J Mol Cell Biol,2017

3. ELF4 is a target of miR-124 and promotes neuroblastoma proliferation and undifferentiated state;A Kosti;Mol Cancer Res,2020

4. The transcription factor MEF/Elf4 is dually modulated by p53-MDM2 axis and MEF-MDM2 autoregulatory mechanism;MA Suico;J Biol Chem,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3