Photovoltaic modules evaluation and dry-season energy yield prediction model for NEM in Malaysia

Author:

Islam Syed ZahurulORCID,Othman Mohammad Lutfi,Saufi MuhammadORCID,Omar Rosli,Toudeshki ArashORCID,Islam Syed Zahidul

Abstract

This study analyzes the performance of two PV modules, amorphous silicon (a-Si) and crystalline silicon (c-Si) and predicts energy yield, which can be seen as facilitation to achieve the target of 35% reduction of greenhouse gases emission by 2030. Malaysia Energy Commission recommends crystalline PV modules for net energy metering (NEM), but the climate regime is a concern for output power and efficiency. Based on rainfall and irradiance data, this study aims to categorize the climate of peninsular Malaysia into rainy and dry seasons; and then the performance of the two modules are evaluated under the dry season. A new mathematical model is developed to predict energy yield and the results are validated through experimental and systematic error analysis. The parameters are collected using a self-developed ZigBeePRO-based wireless system with the rate of 3 samples/min over a period of five days. The results unveil that efficiency is inversely proportional to the irradiance due to negative temperature coefficient for crystalline modules. For this phenomenon, efficiency of c-Si (9.8%) is found always higher than a-Si (3.5%). However, a-Si shows better shadow tolerance compared to c-Si, observed from a lesser decrease rate in efficiency of the former with the increase in irradiance. Due to better spectrum response and temperature coefficient, a-Si shows greater performance on output power efficiency (OPE), performance ratio (PR), and yield factor. From the regression analysis, it is found that the coefficient of determination (R2) is between 0.7179 and 0.9611. The energy from the proposed model indicates that a-Si yields 15.07% higher kWh than c-Si when luminance for recorded days is 70% medium and 30% high. This study is important to determine the highest percentage of energy yield and to get faster NEM payback period, where as of now, there is no such model to indicate seasonal energy yield in Malaysia.

Funder

Universiti Tun Hussein Onn Malaysia

Universiti Putra Malaysia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

1. Public opinion on renewable energy technologies and climate change in Peninsular Malaysia;R Kardooni;Renewable energy,2018

2. Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect;S Zahurul;Renewable and Sustainable Energy Reviews,2016

3. The potential and status of renewable energy development in Malaysia;WSW Abdullah;Energies,2019

4. Energy Commision. Peninsular Malaysia Electricity Supply Industry Outlook 2017; 2020. https://www.st.gov.my/web/download/listing/106.

5. Design of a cleaning program for a pv plant based on analysis of energy losses;JW Zapata;IEEE Journal of Photovoltaics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3