Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information

Author:

Lee GeonhuiORCID,Choi Woong,Jo Hanjin,Park Wookhyun,Kim JaehyoORCID

Abstract

We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.

Funder

Korea National Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Visuomotor coordination in reaching and locomotion;A Georgopoulos;Sci,1998

2. Mirror visual feedback training improves intermanual transfer in a sport-specific task: A comparison between different skill levels.;F Steinberg;Neural Plast,2016

3. Framework for visual feedback training based on a modified self organizing map to imitate complex motion;H Yokota;Proc. of the Inst. of Mech. Eng. and Technol,2019

4. Movement control in a repetitive motor task;WDA Beggs;Nature,1970

5. Endpoints of arm movements to visual targets;J Van den Dobbelsteen;Exp. Brain Res,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3