Preparation and characterization of monoclonal antibodies recognizing two CD4 isotypes of Microminipigs

Author:

Ohshima Shino,Matsubara Tatsuya,Miyamoto Asuka,Shigenari Atsuko,Imaeda Noriaki,Takasu Masaki,Tanaka Masafumi,Shiina Takashi,Suzuki Shingo,Hirayama Noriaki,Kitagawa Hitoshi,Kulski Jerzy K.,Ando Asako,Kametani YoshieORCID

Abstract

Cluster of differentiation 4 (CD4) molecule expressed on the leukocytes is known to function as a co-receptor for class II major histocompatibility complex (MHC) binding to T cell receptor (TCR) on helper T cells. We previously identified two CD4 alleles (CD4.A and CD4.B) in a Microminipig population based on nucleotide sequencing and PCR detection of their gene sequences. However, CD4.B protein expression was not examined because of the unavailability of a reactive antibody to a CD4.B epitope. In this study, we have produced two swine-specific monoclonal antibodies (mAbs) against CD4.B molecules, one that recognizes only CD4.B (b1D7) and the other that recognizes both the CD4.A and CD4.B alleles (x1E10) and that can be used to distinguish CD4 T cell subsets by flow cytometry and immunohistochemistry. Using these two mAbs, we identified CD4.A and CD4.B allele-specific proteins on the surface of CD4.A (+/+) and CD4.B (+/+) T cells at a similar level of expression. Moreover, stimulation of peripheral blood mononuclear cells (PBMCs) derived from CD4.A (+/+) and CD4.B (+/+) swine with toxic shock syndrome toxin-1 (TSST-1) in vitro similarly activated both groups of cells that exhibited a slight increase in the CD4/CD8 double positive (DP) cell ratio. A large portion of the DP cells from the allelic CD4.A (+/+) and CD4.B (+/+) groups enhanced the total CD4 and class I swine leukocyte antigen (SLA) expression. The x1E10 mAb delayed and reduced the TSST-1-induced activation of CD4 T cells. Thus, CD4.B appears to be a functional protein whose expression on activated T cells is analogous to CD4.A.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3