Automatic fault detection of sensors in leather cutting control system under GWO-SVM algorithm

Author:

Luo KeORCID,Jiao Yingying

Abstract

The purposes are to meet the individual needs of leather production, improve the efficiency of leather cutting, and increase the product’s competitiveness. According to the existing problems in current leather cutting systems, a Fault Diagnosis (FD) method combining Convolutional Neural Network (CNN) and the Support Vector Machine (SVM) of Gray Wolf Optimizer (GWO) is proposed. This method first converts the original signal into a scale spectrogram and then selects the pre-trained CNN model, AlexNet, to extract the signal scale spectrogram’s features. Next, the Principal Component Analysis (PCA) reduces the obtained feature’s dimensionality. Finally, the normalized data are input into GWO’s SVM classifier to diagnose the bearing’s faults. Results demonstrate that the proposed model has higher cutting accuracy than the latest fault detection models. After model optimization, when c is 25 and g is 0.2, the model accuracy can reach 99.24%, an increase of 66.96% compared with traditional fault detection models. The research results can provide ideas and practical references for improving leather cutting enterprises’ process flow.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. Fourth industrial revolution: a way forward to attain better performance in the textile industry;B. Ślusarczyk;Engineering Management in Production and Services,2019

2. Circular economy practices in the leather industry: A practical step towards sustainable development;M.A. Moktadir;Journal of Cleaner Production,2020

3. Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration;Y. Li;The International Journal of Advanced Manufacturing Technology,2016

4. Fiber Laser Marking Machine for Metal/Plastic/Tag/Key Chains/Pen Metal Tag Printing Machine-50webs. com;B. Mehra;Journal of Laboratory Physicians,2016

5. Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China;G. Xu;Technological Forecasting and Social Change,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3