Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA

Author:

Kumar Shashi,Deshpande Parag A.ORCID

Abstract

Molecular basis of protein stability at different temperatures is a fundamental problem in protein science that is substantially far from being accurately and quantitatively solved as it requires an explicit knowledge of the temperature dependence of folding free energy of amino acid residues. In the present study, we attempted to gain insights into the thermodynamic stability of SazCA and its implications on protein folding/unfolding. We report molecular dynamics simulations of water solvated SazCA in a temperature range of 293-393 K to study the relationship between the thermostability and flexibility. Our structural analysis shows that the protein maintains the highest structural stability at 353 K and the protein conformations are highly flexible at temperatures above 353 K. Larger exposure of hydrophobic surface residues to the solvent medium for conformations beyond 353 K were identified from H-bond analysis. Higher number of secondary structure contents exhibited by SazCA at 353 K corroborated the conformations at 353 K to exhibit the highest thermal stability. The analysis of thermodynamics of protein stability revealed that the conformations that denature at higher melting temperatures tend to have greater maximum thermal stability. Our analysis shows that 353 K conformations have the highest melting temperature, which was found to be close to the experimental optimum temperature. The enhanced protein stability at 353 K due the least value of heat capacity at unfolding suggested an increase in folding. Comparative Gibbs free energy analysis and funnel shaped energy landscape confirmed a transition in folding/unfolding pathway of SazCA at 353 K.

Funder

Department of Biotechnology, Ministry of Science and Technology, Government of India

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3