Abstract
Because large numbers of artworks are preserved in museums and galleries, much work must be done to classify these works into genres, styles and artists. Recent technological advancements have enabled an increasing number of artworks to be digitized. Thus, it is necessary to teach computers to analyze (e.g., classify and annotate) art to assist people in performing such tasks. In this study, we tested 7 different models on 3 different datasets under the same experimental setup to compare their art classification performances when either using or not using transfer learning. The models were compared based on their abilities for classifying genres, styles and artists. Comparing the result with previous work shows that the model performance can be effectively improved by optimizing the model structure, and our results achieve state-of-the-art performance in all classification tasks with three datasets. In addition, we visualized the process of style and genre classification to help us understand the difficulties that computers have when tasked with classifying art. Finally, we used the trained models described above to perform similarity searches and obtained performance improvements.
Funder
Ministry of Education & Zhejiang Province
Publisher
Public Library of Science (PLoS)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献