An indirect method to monitor the fraction of people ever infected with COVID-19: An application to the United States

Author:

Sánchez-Romero Miguel,di Lego VanessaORCID,Prskawetz AlexiaORCID,L. Queiroz Bernardo

Abstract

The number of COVID-19 infections is key for accurately monitoring the pandemics. However, due to differential testing policies, asymptomatic individuals and limited large-scale testing availability, it is challenging to detect all cases. Seroprevalence studies aim to address this gap by retrospectively assessing the number of infections, but they can be expensive and time-intensive, limiting their use to specific population subgroups. In this paper, we propose a complementary approach that combines estimated (1) infection fatality rates (IFR) using a Bayesian melding SEIR model with (2) reported case-fatality rates (CFR) in order to indirectly estimate the fraction of people ever infected (from the total population) and detected (from the ever infected). We apply the technique to the U.S. due to their remarkable regional diversity and because they count with almost a quarter of all global confirmed cases and deaths. We obtain that the IFR varies from 1.25% (0.39–2.16%, 90% CI) in Florida, the most aged population, to 0.69% in Utah (0.21–1.30%, 90% CI), the youngest population. By September 8, 2020, we estimate that at least five states have already a fraction of people ever infected between 10% and 20% (New Jersey, New York, Massachussets, Connecticut, and District of Columbia). The state with the highest estimated fraction of people ever infected is New Jersey with 17.3% (10.0, 55.8, 90% CI). Moreover, our results indicate that with a probability of 90 percent the fraction of detected people among the ever infected since the beginning of the epidemic has been less than 50% in 15 out of the 20 states analyzed in this paper. Our approach can be a valuable tool that complements seroprevalence studies and indicates how efficient have testing policies been since the beginning of the outbreak.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference75 articles.

1. OECD. The territorial impact of COVID-19: Managing the crisis across levels of government, OECD Policy Responses to Coronavirus (COVID-19) [Internet]. 2020. http://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/

2. Centers for Disease Control and Prevention (CDC). COVID Data Tracker [Internet]. 2020 [cited 2020 Jul 3]. https://www.cdc.gov/covid-data-tracker/index.html#testing

3. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States;A Mollalo;Sci Total Environ,2020

4. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters;MR Desjardins;Appl Geogr,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3