Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals

Author:

Gabriel TesfayeORCID,Wondu Kebede,Dilebo Jemal

Abstract

Cellulose fibers (C40 and C80) were extracted from khat (Catha edulis) waste (KW) with chlorine-free process using 40% formic acid/40% acetic acid (C40), and 80% formic acid/80% acetic acid (C80) at the pretreatment stage, followed by further delignification and bleaching stages. Cellulose nanocrystals (CNCs40 and CNCs80) were then isolated from C40 and C80 with sulfuric acid hydrolysis, respectively. Thus, the current study aims to isolate cellulose fibers and CNCs from KW as alternative source. The KW, cellulose fibers, and CNCs were investigated for yield, chemical composition, functionality, crystallinity, morphology, and thermal stability. CNCs were also evaluated for colloidal stability, particle size, and their influence on in vitro diclofenac sodium release from gel formulations preliminarily. The FTIR spectra analysis showed the removal of most hemicellulose and lignin from the cellulose fibers. The XRD results indicated that chemical pretreatments and acid hydrolysis significantly increased the crystallinity of cellulose fibers and CNCs. The cellulose fibers and CNCs exhibited Cellulose Iβ crystalline lattice. TEM analysis revealed formation of needle-shaped nanoscale rods (length: 101.55–162.96 nm; aspect ratio: 12.84–22.73). The hydrodynamic size, polydispersity index, and zeta potential of the CNCS ranged from 222.8–362.8 nm; 0.297–0.461, and -45.7 to -75.3 mV, respectively. CNCs40 exhibited superior properties to CNCs80 in terms of aspect ratio, and colloidal and thermal stability. Gel formulations containing high proportion of CNCs sustained diclofenac sodium release (< 50%/cm2) over 12 h. This study suggests that cellulose fibers and nanocrystals can be successfully obtained from abundant and unexploited source, KW for value-added industrial applications.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference80 articles.

1. The psychostimulant drug khat (Catha edulis): A mini-review;T Nichols;Phytochem Lett,2015

2. Chat (Catha edulis): a socio economic crop in Harar Region, Eastern Ethiopia;LS Kandari;J Korean Phys Soc,2014

3. Manurial value of khat waste vermicompost from Awday, Harar town, Ethiopia;HY Rameshwar;Int J Recycl Org Waste Agric,2016

4. Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations;W Bedada;Sci Rep,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3