Integrating contextual sentiment analysis in collaborative recommender systems

Author:

Osman Nurul AidaORCID,Mohd Noah Shahrul AzmanORCID,Darwich MohammadORCID,Mohd Masnizah

Abstract

Recently. recommender systems have become a very crucial application in the online market and e-commerce as users are often astounded by choices and preferences and they need help finding what the best they are looking for. Recommender systems have proven to overcome information overload issues in the retrieval of information, but still suffer from persistent problems related to cold-start and data sparsity. On the flip side, sentiment analysis technique has been known in translating text and expressing user preferences. It is often used to help online businesses to observe customers’ feedbacks on their products as well as try to understand customer needs and preferences. However, the current solution for embedding traditional sentiment analysis in recommender solutions seems to have limitations when involving multiple domains. Therefore, an issue called domain sensitivity should be addressed. In this paper, a sentiment-based model with contextual information for recommender system was proposed. A novel solution for domain sensitivity was proposed by applying a contextual information sentiment-based model for recommender systems. In evaluating the contributions of contextual information in sentiment-based recommendations, experiments were divided into standard rating model, standard sentiment model and contextual information model. Results showed that the proposed contextual information sentiment-based model illustrates better performance as compared to the traditional collaborative filtering approach.

Funder

Universiti Kebangsaan Malaysia’s Prime Impact Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3