Unobtrusive monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer network

Author:

Mödinger DavidORCID,Lorenz Jan-Hendrik,van der Heijden Rens W.,Hauck Franz J.ORCID

Abstract

The cryptocurrency system Bitcoin uses a peer-to-peer network to distribute new transactions to all participants. For risk estimation and usability aspects of Bitcoin applications, it is necessary to know the time required to disseminate a transaction within the network. Unfortunately, this time is not immediately obvious and hard to acquire. Measuring the dissemination latency requires many connections into the Bitcoin network, wasting network resources. Some third parties operate that way and publish large scale measurements. Relying on these measurements introduces a dependency and requires additional trust. This work describes how to unobtrusively acquire reliable estimates of the dissemination latencies for transactions without involving a third party. The dissemination latency is modelled with a lognormal distribution, and we estimate their parameters using a Bayesian model that can be updated dynamically. Our approach provides reliable estimates even when using only eight connections, the minimum connection number used by the default Bitcoin client. We provide an implementation of our approach as well as datasets for modelling and evaluation. Our approach, while slightly underestimating the latency distribution, is largely congruent with observed dissemination latencies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating an Agri-Food DApp System;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering - Companion (SANER-C);2024-03-12

2. IIoT Latency in Remote Fast-Control Processes;2023 International Conference on Applied Electronics (AE);2023-09-06

3. Functional and Performance Analysis of Discrete Event Network Simulation Tools;Simulation Modelling Practice and Theory;2022-04

4. Statistical privacy-preserving message broadcast for peer-to-peer networks;PLOS ONE;2021-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3