Response of oat morphologies, root exudates, and rhizosphere fungal communities to amendments in a saline-alkaline environment

Author:

Lu Peina,Yang Tony,Li Lijun,Zhao Baoping,Liu JinghuiORCID

Abstract

The application of organic amendments to saline-alkaline soil has been recommended as an agricultural strategy to improve crop productivity and soil health. However, there has been limited research on how organic soil amendment strategies affect the health of oats and their associated rhizosphere fungal communities in saline-alkaline conditions. Thus, the objectives of this study were to understand the effects of oat cultivars with contrasting saline-alkaline tolerances and different amendments on plant morphologies, root exudates (soluble sugars and organic acids), and rhizosphere fungal communities in a saline-alkaline environment. Experiments were conducted on a saline-alkaline tolerant cultivar, Baiyan2, and a saline-alkaline sensitive cultivar, Caoyou1, under four different organic amendment strategies: 1. control (no amendment application), 2. bio-fertilizer application, 3. rotten straw application, and 4. a co-application of bio-fertilizer and rotten straw. Results showed that plant morphological characters of Baiyan2 were better than Caoyou1, and that soluble sugar and organic acid levels in the rhizosphere of Baiyan2 were significantly lower than Caoyou1. Compared to the control, oat root and plant development was significantly improved by the combined bio-fertilizer and rotten straw amendment. Bio-fertilizer application promoted malic and citric acid levels, contributing to a higher total organic acid level, and significantly increased the abundance of Rhizopus arrhizus and decreased the abundance of the fungal pathogens Alternaria, Cladosporium, Sarocladium and Heydenia of Ascomycota in both oat cultivars. All amendment treatments containing rotten straw, except the combined amendment in Baiyan2, significantly increased the relative abundance of Ascomycota (specifically Gibberella, Talaromyces, Fusarium, and Bipolaris) and decreased the relative abundance of R. arrhizus by reducing soluble sugar and organic acid levels. For the combined amendment in Baiyan2, there were no significant changes in Gibberella and Rhizopus between the control and amendment treatment. Our results suggest that co-application of bio-fertilizer and rotten straw, combined with a tolerant oat cultivar, is an effective method to increase crop productivity and enhance soil health in a saline-alkaline environment.

Funder

Scientific and Technological Innovation Team of Inner Mongolia

Multi-grain Engineering and Technology Center of Inner Mongolia

Talent Introduction Project of Inner Mongolia Agricultural University

MOE-AAFC PhD Research program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3