Molecular and electrophysiological features of spinocerebellar ataxia type seven in induced pluripotent stem cells

Author:

Burman Richard J.ORCID,Watson Lauren M.,Smith Danielle C.,Raimondo Joseph V.ORCID,Ballo RobeaORCID,Scholefield Janine,Cowley Sally A.,Wood Matthew J. A.,Kidson Susan H.,Greenberg Leslie J.

Abstract

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the ATXN7 gene. Patients with this disease suffer from a degeneration of their cerebellar Purkinje neurons and retinal photoreceptors that result in a progressive ataxia and loss of vision. As with many neurodegenerative diseases, studies of pathogenesis have been hindered by a lack of disease-relevant models. To this end, we have generated induced pluripotent stem cells (iPSCs) from a cohort of SCA7 patients in South Africa. First, we differentiated the SCA7 affected iPSCs into neurons which showed evidence of a transcriptional phenotype affecting components of STAGA (ATXN7 and KAT2A) and the heat shock protein pathway (DNAJA1 and HSP70). We then performed electrophysiology on the SCA7 iPSC-derived neurons and found that these cells show features of functional aberrations. Lastly, we were able to differentiate the SCA7 iPSCs into retinal photoreceptors that also showed similar transcriptional aberrations to the SCA7 neurons. Our findings give technical insights on how iPSC-derived neurons and photoreceptors can be derived from SCA7 patients and demonstrate that these cells express molecular and electrophysiological differences that may be indicative of impaired neuronal health. We hope that these findings will contribute towards the ongoing efforts to establish the cell-derived models of neurodegenerative diseases that are needed to develop patient-specific treatments.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3