An image segmentation technique with statistical strategies for pesticide efficacy assessment

Author:

Kim Steven B.,Kim Dong SubORCID,Mo Xiaoming

Abstract

Image analysis is a useful technique to evaluate the efficacy of a treatment for weed control. In this study, we address two practical challenges in the image analysis. First, it is challenging to accurately quantify the efficacy of a treatment when an entire experimental unit is not affected by the treatment. Second, RGB codes, which can be used to identify weed growth in the image analysis, may not be stable due to various surrounding factors, human errors, and unknown reasons. To address the former challenge, the technique of image segmentation is considered. To address the latter challenge, the proportion of weed area is adjusted under a beta regression model. The beta regression is a useful statistical method when the outcome variable (proportion) ranges between zero and one. In this study, we attempt to accurately evaluate the efficacy of a 35% hydrogen peroxide (HP). The image segmentation was applied to separate two zones, where the HP was directly applied (gray zone) and its surroundings (nongray zone). The weed growth was monitored for five days after the treatment, and the beta regression was implemented to compare the weed growth between the gray zone and the control group and between the nongray zone and the control group. The estimated treatment effect was substantially different after the implementation of image segmentation and the adjustment of green area.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Identification, distribution, and control of Italian ryegrass (Lolium multiflorum) ecotypes with varying levels of sensitivity to triasulfuron in Texas;KP Tucker;Weed Technology,2006

2. Crop/weed discrimination in perspective agronomic images;C Gée;Computers and Electronics in Agriculture,2008

3. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution;JM Peña;Sensors,2015

4. Weed detection using image processing under different illumination for site-specific areas spraying;JL Tang;Computers and Electronics in Agriculture,2016

5. Rapid recognition of field-grown wheat spikes based on a superpixel segmentation algorithm using digital images;J Yu;Frontiers in Plant Science,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3