Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice

Author:

Kim Jun-daeORCID,Zhu Lingping,Sun Quan,Fang LonghouORCID

Abstract

Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans. Whereas cyclic NADPHX production is proposed to be the underlying cause, we hypothesize that an unbiased metabolic profiling may: 1) reveal new clues for the lethality, e.g., changes of mitochondrial metabolites., and 2) identify metabolites associated with new AIBP functions. To this end, we performed unbiased and profound metabolic studies of plasma obtained from adult AIBP knockout mice and control littermates of both genders. Our systemic metabolite profiling, encompassing 9 super pathways, identified a total of 640 compounds. Our studies demonstrate a surprising sexual dimorphism of metabolites affected by AIBP deletion, with more statistically significant changes in the AIBP knockout female vs male when compared with the corresponding controls. AIBP knockout trends to reduce cholesterol but increase the bile acid precursor 7-HOCA in female but not male. Complex lipids, phospholipids, sphingomyelin and plasmalogens were reduced, while monoacylglycerol, fatty acids and the lipid soluble vitamins E and carotene diol were elevated in AIBP knockout female but not male. NAD metabolites were not significantly different in AIBP knockout vs control mice but differed for male vs female mice. Metabolites associated with glycolysis and the Krebs cycle were unchanged by AIBP knockout. Importantly, polyamine spermidine, critical for many cellular functions including cerebral cortex synapses, was reduced in male but not female AIBP knockout. This is the first report of a systemic metabolite profile of plasma samples from AIBP knockout mice, and provides a metabolic basis for future studies of AIBP regulation of cellular metabolism and the pathophysiological presentation of AIBP deficiency in patients.

Funder

National Heart, Lung, and Blood Institute

American Heart Association

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. AIBP, inflammation, and atherosclerosis;H Chen;J Lipid Res,2018

2. AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation;SH Choi;JCI Insight,2018

3. Inhibition of HIV Replication by Apolipoprotein A-I Binding Protein Targeting the Lipid Rafts;L Dubrovsky;mBio,2020

4. Control of angiogenesis by AIBP-mediated cholesterol efflux;L Fang;Nature,2013

5. Regulation of lipid rafts, angiogenesis and inflammation by AIBP;L Fang;Curr Opin Lipidol,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3