Analysis of the real number of infected people by COVID-19: A system dynamics approach

Author:

Hu Bo,Dehmer MatthiasORCID,Emmert-Streib Frank,Zhang Bo

Abstract

At the beginning of 2020, the COVID-19 pandemic was able to spread quickly in Wuhan and in the province of Hubei due to a lack of experience with this novel virus. Additionally, authories had no proven experience with applying insufficient medical, communication and crisis management tools. For a considerable period of time, the actual number of people infected was unknown. There were great uncertainties regarding the dynamics and spread of the Covid-19 virus infection. In this paper, we develop a system dynamics model for the three connected regions (Wuhan, Hubei excl. Wuhan, China excl. Hubei) to understand the infection and spread dynamics of the virus and provide a more accurate estimate of the number of infected people in Wuhan and discuss the necessity and effectivity of protective measures against this epidemic, such as the quarantines imposed throughout China. We use the statistics of confirmed cases of China excl. Hubei. Also the daily data on travel activity within China was utilized, in order to determine the actual numerical development of the infected people in Wuhan City and Hubei Province. We used a multivariate Monte Carlo optimization to parameterize the model to match the official statistics. In particular, we used the model to calculate the infections, which had already broken out, but were not diagnosed for various reasons.

Funder

Austrian Science Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference13 articles.

1. Joseph T Wu, Kathy Leung, Gabriel M Leung: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 31.01.2020

2. Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science, 16 Mar 2020

3. Alessia Lai, Annalisa Bergna, Carla Acciarri, Massimo Galli, Gianguglielmo Zehender: Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2. Journal of Medical Virology, Wiley, 2020

4. Qun Li et al.: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. The New England Journal of Medicine, January 29, 2020

5. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2;Sanche Steven;Emerg Infect Dis,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3