Adding DNA barcoding to stream monitoring protocols – What’s the additional value and congruence between morphological and molecular identification approaches?

Author:

Behrens-Chapuis SimoneORCID,Herder Fabian,Geiger Matthias F.

Abstract

Although aquatic macroinvertebrates and freshwater fishes are important indicators for freshwater quality assessments, the morphological identification to species-level is often impossible and thus especially in many invertebrate taxa not mandatory during Water Framework Directive monitoring, a pragmatism that potentially leads to information loss. Here, we focus on the freshwater fauna of the River Sieg (Germany) to test congruence and additional value in taxa detection and taxonomic resolution of DNA barcoding vs. morphology-based identification in monitoring routines. Prior generated morphological identifications of juvenile fishes and aquatic macroinvertebrates were directly compared to species assignments using the identification engine of the Barcode of Life Data System. In 18% of the invertebrates morphology allowed only assignments to higher systematic entities, but DNA barcoding lead to species-level assignment. Dissimilarities between the two approaches occurred in 7% of the invertebrates and in 1% of the fishes. The 18 fish species were assigned to 20 molecular barcode index numbers, the 104 aquatic invertebrate taxa to 113 molecular entities. Although the cost-benefit analysis of both methods showed that DNA barcoding is still more expensive (5.30–8.60€ per sample) and time consuming (12.5h), the results emphasize the potential to increase taxonomic resolution and gain a more complete profile of biodiversity, especially in invertebrates. The provided reference DNA barcodes help building the foundation for metabarcoding approaches, which provide faster sample processing and more cost-efficient ecological status determination.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3