A novel mouse model of obstructive sleep apnea by bulking agent-induced tongue enlargement results in left ventricular contractile dysfunction

Author:

Lebek SimonORCID,Hegner PhilippORCID,Schach Christian,Reuthner Kathrin,Tafelmeier Maria,Maier Lars Siegfried,Arzt Michael,Wagner Stefan

Abstract

Aims Obstructive sleep apnea (OSA) is a widespread disease with high global socio-economic impact. However, detailed pathomechanisms are still unclear, partly because current animal models of OSA do not simulate spontaneous airway obstruction. We tested whether polytetrafluoroethylene (PTFE) injection into the tongue induces spontaneous obstructive apneas. Methods and results PTFE (100 μl) was injected into the tongue of 31 male C57BL/6 mice and 28 mice were used as control. Spontaneous apneas and inspiratory flow limitations were recorded by whole-body plethysmography and mRNA expression of the hypoxia marker KDM6A was quantified by qPCR. Left ventricular function was assessed by echocardiography and ventricular CaMKII expression was measured by Western blotting. After PTFE injection, mice showed features of OSA such as significantly increased tongue diameters that were associated with significantly and sustained increased frequencies of inspiratory flow limitations and apneas. Decreased KDM6A mRNA levels indicated chronic hypoxemia. 8 weeks after surgery, PTFE-treated mice showed a significantly reduced left ventricular ejection fraction. Moreover, the severity of diastolic dysfunction (measured as E/e’) correlated significantly with the frequency of apneas. Accordingly, CaMKII expression was significantly increased in PTFE mice and correlated significantly with the frequency of apneas. Conclusions We describe here the first mouse model of spontaneous inspiratory flow limitations, obstructive apneas, and hypoxia by tongue enlargement due to PTFE injection. These mice develop systolic and diastolic dysfunction and increased CaMKII expression. This mouse model offers great opportunities to investigate the effects of obstructive apneas.

Funder

Max Weber scholarship

Deutsche Forschungsgemeinschaft

Universitätsklinikum Regensburg

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3