Screening accuracy of a 14-day smartphone ambulatory assessment of depression symptoms and mood dynamics in a general population sample: Comparison with the PHQ-9 depression screening

Author:

Burchert SebastianORCID,Kerber André,Zimmermann Johannes,Knaevelsrud Christine

Abstract

Introduction Major depression affects over 300 million people worldwide, but cases are often detected late or remain undetected. This increases the risk of symptom deterioration and chronification. Consequently, there is a high demand for low threshold but clinically sound approaches to depression detection. Recent studies show a great willingness among users of mobile health apps to assess daily depression symptoms. In this pilot study, we present a provisional validation of the depression screening app Moodpath. The app offers a 14-day ambulatory assessment (AA) of depression symptoms based on the ICD-10 criteria as well as ecologically momentary mood ratings that allow the study of short-term mood dynamics. Materials and methods N = 113 Moodpath users were selected through consecutive sampling and filled out the Patient Health Questionnaire (PHQ-9) after completing 14 days of AA with 3 question blocks (morning, midday, and evening) per day. The psychometric properties (sensitivity, specificity, accuracy) of the ambulatory Moodpath screening were assessed based on the retrospective PHQ-9 screening result. In addition, several indicators of mood dynamics (e.g. average, inertia, instability), were calculated and investigated for their individual and incremental predictive value using regression models. Results We found a strong linear relationship between the PHQ-9 score and the AA Moodpath depression score (r = .76, p < .001). The app-based screening demonstrated a high sensitivity (.879) and acceptable specificity (.745). Different indicators of mood dynamics covered substantial amounts of PHQ-9 variance, depending on the number of days with mood data that were included in the analyses. Discussion AA and PHQ-9 shared a large proportion of variance but may not measure exactly the same construct. This may be due to the differences in the underlying diagnostic systems or due to differences in momentary and retrospective assessments. Further validation through structured clinical interviews is indicated. The results suggest that ambulatory assessed mood indicators are a promising addition to multimodal depression screening tools. Improving app-based AA screenings requires adapted screening algorithms and corresponding methods for the analysis of dynamic processes over time.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference97 articles.

1. The epidemiology of depression across cultures.;RC Kessler;Annual review of public health.,2013

2. Scaling-up treatment of depression and anxiety: a global return on investment analysis;D Chisholm;The Lancet Psychiatry,2016

3. World Health Organization. Mental health ATLAS 2017. Geneva: 2017.

4. Prevalence, recognition and management of depression in primary care in Germany: the Depression 2000 study;HU Wittchen;Human psychopharmacology,2002

5. Barriers to mental health treatment: results from the WHO World Mental Health surveys.;LH Andrade;Psychological medicine.,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3