PolyFold: An interactive visual simulator for distance-based protein folding

Author:

McGehee Andrew J.,Bhattacharya Sutanu,Roche Rahmatullah,Bhattacharya DebswapnaORCID

Abstract

Recent advances in distance-based protein folding have led to a paradigm shift in protein structure prediction. Through sufficiently precise estimation of the inter-residue distance matrix for a protein sequence, it is now feasible to predict the correct folds for new proteins much more accurately than ever before. Despite the exciting progress, a dedicated visualization system that can dynamically capture the distance-based folding process is still lacking. Most molecular visualizers typically provide only a static view of a folded protein conformation, but do not capture the folding process. Even among the selected few graphical interfaces that do adopt a dynamic perspective, none of them are distance-based. Here we present PolyFold, an interactive visual simulator for dynamically capturing the distance-based protein folding process through real-time rendering of a distance matrix and its compatible spatial conformation as it folds in an intuitive and easy-to-use interface. PolyFold integrates highly convergent stochastic optimization algorithms with on-demand customizations and interactive manipulations to maximally satisfy the geometric constraints imposed by a distance matrix. PolyFold is capable of simulating the complex process of protein folding even on modest personal computers, thus making it accessible to the general public for fostering citizen science. Open source code of PolyFold is freely available for download at https://github.com/Bhattacharya-Lab/PolyFold. It is implemented in cross-platform Java and binary executables are available for macOS, Linux, and Windows.

Funder

National Institute of General Medical Sciences

Division of Information and Intelligent Systems

Division of Biological Infrastructure

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3