Assessment of software methods for estimating protein-protein relative binding affinities

Author:

Gonzalez Tawny R.ORCID,Martin Kyle P.,Barnes Jonathan E.ORCID,Patel Jagdish SureshORCID,Ytreberg F. MartyORCID

Abstract

A growing number of computational tools have been developed to accurately and rapidly predict the impact of amino acid mutations on protein-protein relative binding affinities. Such tools have many applications, for example, designing new drugs and studying evolutionary mechanisms. In the search for accuracy, many of these methods employ expensive yet rigorous molecular dynamics simulations. By contrast, non-rigorous methods use less exhaustive statistical mechanics, allowing for more efficient calculations. However, it is unclear if such methods retain enough accuracy to replace rigorous methods in binding affinity calculations. This trade-off between accuracy and computational expense makes it difficult to determine the best method for a particular system or study. Here, eight non-rigorous computational methods were assessed using eight antibody-antigen and eight non-antibody-antigen complexes for their ability to accurately predict relative binding affinities (ΔΔG) for 654 single mutations. In addition to assessing accuracy, we analyzed the CPU cost and performance for each method using a variety of physico-chemical structural features. This allowed us to posit scenarios in which each method may be best utilized. Most methods performed worse when applied to antibody-antigen complexes compared to non-antibody-antigen complexes. Rosetta-based JayZ and EasyE methods classified mutations as destabilizing (ΔΔG < -0.5 kcal/mol) with high (83–98%) accuracy and a relatively low computational cost for non-antibody-antigen complexes. Some of the most accurate results for antibody-antigen systems came from combining molecular dynamics with FoldX with a correlation coefficient (r) of 0.46, but this was also the most computationally expensive method. Overall, our results suggest these methods can be used to quickly and accurately predict stabilizing versus destabilizing mutations but are less accurate at predicting actual binding affinities. This study highlights the need for continued development of reliable, accessible, and reproducible methods for predicting binding affinities in antibody-antigen proteins and provides a recipe for using current methods.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3