Towards remote monitoring in pediatric care and clinical trials—Tolerability, repeatability and reference values of candidate digital endpoints derived from physical activity, heart rate and sleep in healthy children

Author:

Kruizinga M. D.ORCID,Heide N. van der,Moll A.,Zhuparris A.,Yavuz Y.,Kam M. L. de,Stuurman F. E.ORCID,Cohen A. F.,Driessen G. J. A.

Abstract

Background Digital devices and wearables allow for the measurement of a wide range of health-related parameters in a non-invasive manner, which may be particularly valuable in pediatrics. Incorporation of such parameters in clinical trials or care as digital endpoint could reduce the burden for children and their parents but requires clinical validation in the target population. This study aims to determine the tolerability, repeatability, and reference values of novel digital endpoints in healthy children. Methods Apparently healthy children (n = 175, 46% male) aged 2–16 were included. Subjects were monitored for 21 days using a home-monitoring platform with several devices (smartwatch, spirometer, thermometer, blood pressure monitor, scales). Endpoints were analyzed with a mixed effects model, assessing variables that explained within- and between-subject variability. Endpoints based on physical activity, heart rate, and sleep-related parameters were included in the analysis. For physical-activity-related endpoints, a sample size needed to detect a 15% increase was calculated. Findings Median compliance was 94%. Variability in each physical activity-related candidate endpoint was explained by age, sex, watch wear time, rain duration per day, average ambient temperature, and population density of the city of residence. Estimated sample sizes for candidate endpoints ranged from 33–110 per group. Daytime heart rate, nocturnal heart rate and sleep duration decreased as a function of age and were comparable to reference values published in the literature. Conclusions Wearable- and portable devices are tolerable for pediatric subjects. The raw data, models and reference values presented here can be used to guide further validation and, in the future, clinical trial designs involving the included measures.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3