Visual light perceptions caused by medical linear accelerator: Findings of machine-learning algorithms in a prospective questionnaire-based case–control study

Author:

Kuo Chao-Yang,Lee Cheng-Chun,Lee Yuh-Lin,Liou Shueh-Chun,Lee Jia-Cheng,Su Emily Chia-YuORCID,Chen Yi-Wei

Abstract

This study aimed to investigate the possible incidence of visual light perceptions (VLPs) during radiation therapy (RT). We analyzed whether VLPs could be affected by differences in the radiation energy, prescription doses, age, sex, or RT locations, and whether all VLPs were caused by radiation. From November 2016 to August 2018, a total of 101 patients who underwent head-and-neck or brain RT were screened. After receiving RT, questionnaires were completed, and the subjects were interviewed. Random forests (RF), a tree-based machine learning algorithm, and logistic regression (LR) analyses were compared by the area under the curve (AUC), and the algorithm that achieved the highest AUC was selected. The dataset sample was based on treatment with non-human units, and a total of 293 treatment fields from 78 patients were analyzed. VLPs were detected only in 122 of the 293 exposure portals (40.16%). The dataset was randomly divided into 80% and 20% as the training set and test set, respectively. In the test set, RF achieved an AUC of 0.888, whereas LR achieved an AUC of 0.773. In this study, the retina fraction dose was the most important continuous variable and had a positive effect on VLP. Age was the most important categorical variable. In conclusion, the visual light perception phenomenon by the human body during RT is induced by radiation rather than being a self-suggested hallucination or induced by phosphenes.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3