The porcine corneal surface bacterial microbiome: A distinctive niche within the ocular surface

Author:

Leis Marina L.ORCID,Madruga Gabriela M.,Costa Matheus O.ORCID

Abstract

Purpose The ocular surface microbiome has been described as paucibacterial. Until now, studies investigating the bacterial community associated with the ocular surface through high-throughput sequencing have focused on the conjunctiva. Conjunctival samples are thought to reflect and be representative of the microbiome residing on the ocular surface, including the cornea. Here, we hypothesized that the bacterial community associated with the corneal surface was different from those of the inferonasal and superotemporal conjunctival fornices, and from the tear film. Methods Both eyes from 15 healthy piglets were sampled using swabs (inferonasal fornix, superotemporal fornix, and corneal surface, n = 30 each) and Schirmer tear test strips (STT, n = 30). Negative sampling controls (swabs and STT, n = 2 each) and extraction controls (n = 4) were included. Total DNA was extracted and high-throughput sequencing targeting the 16S rRNA gene was performed. Bioinformatic analyses included multiple contamination-controlling steps. Results Corneal surface samples had a significantly lower number of taxa detected (P<0.01) and were compositionally different from all other sample types (Bray-Curtis dissimilarity, P<0.04). It also harbored higher levels of Proteobacteria (P<0.05), specifically Brevundimonas spp. (4.1-fold) and Paracoccus spp. (3.4-fold) than other sample types. Negative control STT strip samples yielded the highest amount of 16S rRNA gene copies across all sample types (P<0.05). Conclusions Our data suggests that the corneal surface provides a distinct environmental niche within the ocular surface, leading to a bacterial community compositionally different from all other sample types.

Funder

Veterinary Clinical Sciences (VCS) at the University of Minnesota

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3