Impact of elevated air temperature and drought on pollen characteristics of major agricultural grass species

Author:

Jung StephanORCID,Estrella Nicole,Pfaffl Michael W.ORCID,Hartmann Stephan,Ewald Franziska,Menzel Annette

Abstract

Grass pollen allergens are known to be one of the major triggers of hay fever with an increasing number of humans affected by pollen associated health impacts. Climate change characterized by increasing air temperature and more frequent drought periods might affect plant development and pollen characteristics. In this study a one-year (2017) field experiment was conducted in Bavaria, Germany, simulating drought by excluding rain and elevated air temperature by installing a heating system to investigate their effects primarily on the allergenic potential of eight selected cultivars of the two grass species timothy and perennial ryegrass. It could be shown for timothy that especially under drought and heat conditions the allergen content is significantly lower accompanied by a decrease in pollen weight and protein content. In perennial ryegrass the response to drought and heat conditions in terms of allergen content, pollen weight, and protein content was more dependent on the respective cultivar probably due to varying requirements for their growth conditions and tolerance to drought and heat. Results support recommendations which cultivars should be grown preferentially. The optimal choice of grass species and respective cultivars under changing climate conditions should be a major key aspect for the public health sector in the future.

Funder

MICMoR Fellowship through KIT/IMK-IFU

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Localization, release and bioavailability of pollen allergens: The influence of environmental factors;H Behrendt;Current Opinion in Immunology,2001

2. Pollen-related allergy in Europe;G D’Amato;Allergy,1998

3. Mechanism of grass-pollen-induced asthma;C Suphioglu;The Lancet,1992

4. Anthropogenic climate change is worsening North American pollen seasons;WRL Anderegg;Proc Natl Acad Sci U S A,2021

5. European phenological response to climate change matches the warming pattern;A Menzel;Global Change Biol,2006

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3