Abstract
This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p2q where p and q are balanced large primes. Suppose e∈Z+ satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p − 1)(q − 1) and d < Nδ be its multiplicative inverse. From ed − kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when the primes share a known amount of Least Significant Bits(LSBs). This is achievable since we obtain the small roots of our specially constructed integer polynomial which leads to the factorization of N. More specifically we show that N can be factored when the bound δ<119−294+18γ. Our attack enhances the bound of some former attacks upon N = p2q.
Funder
Ministry of Higher Education Malaysia
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献