Deep-learning algorithms for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study

Author:

Jang Se Bum,Lee Suk Hee,Lee Dong EunORCID,Park Sin-Youl,Kim Jong Kun,Cho Jae Wan,Cho Jaekyung,Kim Ki Beom,Park Byunggeon,Park Jongmin,Lim Jae-Kwang

Abstract

The recent medical applications of deep-learning (DL) algorithms have demonstrated their clinical efficacy in improving speed and accuracy of image interpretation. If the DL algorithm achieves a performance equivalent to that achieved by physicians in chest radiography (CR) diagnoses with Coronavirus disease 2019 (COVID-19) pneumonia, the automatic interpretation of the CR with DL algorithms can significantly reduce the burden on clinicians and radiologists in sudden surges of suspected COVID-19 patients. The aim of this study was to evaluate the efficacy of the DL algorithm for detecting COVID-19 pneumonia on CR compared with formal radiology reports. This is a retrospective study of adult patients that were diagnosed as positive COVID-19 cases based on the reverse transcription polymerase chain reaction among all the patients who were admitted to five emergency departments and one community treatment center in Korea from February 18, 2020 to May 1, 2020. The CR images were evaluated with a publicly available DL algorithm. For reference, CR images without chest computed tomography (CT) scans classified as positive for COVID-19 pneumonia were used given that the radiologist identified ground-glass opacity, consolidation, or other infiltration in retrospectively reviewed CR images. Patients with evidence of pneumonia on chest CT scans were also classified as COVID-19 pneumonia positive outcomes. The overall sensitivity and specificity of the DL algorithm for detecting COVID-19 pneumonia on CR were 95.6%, and 88.7%, respectively. The area under the curve value of the DL algorithm for the detection of COVID-19 with pneumonia was 0.921. The DL algorithm demonstrated a satisfactory diagnostic performance comparable with that of formal radiology reports in the CR-based diagnosis of pneumonia in COVID-19 patients. The DL algorithm may offer fast and reliable examinations that can facilitate patient screening and isolation decisions, which can reduce the medical staff workload during COVID-19 pandemic situations.

Funder

Medicity Daegu Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019;N Zhu;N Engl J Med,2020

2. The Canadian Society of Thoracic Radiology (CSTR) and Canadian Association of Radiologists (CAR) Consensus Statement Regarding Chest Imaging in Suspected and Confirmed COVID-19;C Dennie;Can Assoc Radiol J,2020

3. Radiology ACo. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. ACR website Advocacy-and Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CTfor-Suspected-COVID19-Infection Updated March. 2020;22.

4. Revised Triage and Surveillance Protocols for Temporary Emergency Department Closures in Tertiary Hospitals as a Response to COVID-19 Crisis in Daegu Metropolitan City;HS Chung;J Korean Med Sci,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3