Planned missing data in early literacy interventions: A replication study with an additional gold standard

Author:

Rippe Ralph C. A.ORCID,Merkelbach Inge

Abstract

Introduction In a digital early literacy intervention RCT, children born late preterm fell behind peers when in a control condition, but outperformed them when assigned to the intervention. Results did however not replicate previous findings. Replication is often complicated by resource quality. Gold Standard measures are generally time-intensive and costly, while they closely align with, and are more sensitive to changes in, early literacy and language performance. A planned missing data approach, leaving these gold standard measures incomplete, might aid in addressing the origin(s) of non-replication. Methods Participants after consent were 695 p Dutch primary school pupils of normal and late preterm birth. The high-quality measures, in additional to simpler but complete measures, were intentionally administered to a random subsample of children. Five definitions of gold standard alignment were evaluated. Results Two out of five gold standard levels improved precision compared to the original results. The lowest gold standard level did not lead to improvement: precision was actually diminished. In two gold standard definitions, an alphabetical factor and a writing-only factor the model estimates were comparable to the original results. Only the most precise definition of the gold standard level replicated the original results. Conclusion Gold standard measures could only be used to improve model efficiency in RCT-designs under sufficiently high convergent validity.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3