Spontaneous grouping of saccade timing in the presence of task-irrelevant objects

Author:

Takeya Ryuji,Nakamura Shuntaro,Tanaka MasakiORCID

Abstract

Sequential movements are often grouped into several chunks, as evidenced by the modulation of the timing of each elemental movement. Even during synchronized tapping with a metronome, we sometimes feel subjective accent for every few taps. To examine whether motor segmentation emerges during synchronized movements, we trained monkeys to generate a series of predictive saccades synchronized with visual stimuli which sequentially appeared for a fixed interval (400 or 600 ms) at six circularly arranged landmark locations. We found two types of motor segmentations that featured periodic modulation of saccade timing. First, the intersaccadic interval (ISI) depended on the target location and saccade direction, indicating that particular combinations of saccades were integrated into motor chunks. Second, when a task-irrelevant rectangular contour surrounding three landmarks ("inducer") was presented, the ISI significantly modulated depending on the relative target location to the inducer. All patterns of individual differences seen in monkeys were also observed in humans. Importantly, the effects of the inducer greatly decreased or disappeared when the animals were trained to generate only reactive saccades (latency >100 ms), indicating that the motor segmentation may depend on the internal rhythms. Thus, our results demonstrate two types of motor segmentation during synchronized movements: one is related to the hierarchical organization of sequential movements and the other is related to the spontaneous grouping of rhythmic events. This experimental paradigm can be used to investigate the underlying neural mechanism of temporal grouping during rhythm production.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Takeda Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3