Evaluation of pool-based testing approaches to enable population-wide screening for COVID-19

Author:

de Wolff Timo,Pflüger DirkORCID,Rehme Michael,Heuer JaninORCID,Bittner Martin-ImmanuelORCID

Abstract

Objective Rapid testing is paramount during a pandemic to prevent continued viral spread and excess morbidity and mortality. This study investigates whether testing strategies based on sample pooling can increase the speed and throughput of screening for SARS-CoV-2, especially in resource-limited settings. Methods In a mathematical modelling approach conducted in May 2020, six different testing strategies were simulated based on key input parameters such as infection rate, test characteristics, population size, and testing capacity. The situations in five countries were simulated, reflecting a broad variety of population sizes and testing capacities. The primary study outcome measurements were time and number of tests required, number of cases identified, and number of false positives. Findings The performance of all tested methods depends on the input parameters, i.e. the specific circumstances of a screening campaign. To screen one tenth of each country’s population at an infection rate of 1%, realistic optimised testing strategies enable such a campaign to be completed in ca. 29 days in the US, 71 in the UK, 25 in Singapore, 17 in Italy, and 10 in Germany. This is ca. eight times faster compared to individual testing. When infection rates are lower, or when employing an optimal, yet more complex pooling method, the gains are more pronounced. Pool-based approaches also reduce the number of false positive diagnoses by a factor of up to 100. Conclusions The results of this study provide a rationale for adoption of pool-based testing strategies to increase speed and throughput of testing for SARS-CoV-2, hence saving time and resources compared with individual testing.

Funder

Deutsche Forschungsgemeinschaft

Young Academy of the German National Academy of Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Fair Allocation of Scarce Medical Resources in the Time of Covid-19;EJ Emanuel;New England Journal of Medicine,2020

2. Importance of diagnostics in epidemic and pandemic preparedness;CD Kelly-Cirino;BMJ Global Health,2019

3. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks;G Lippi;Clinical Chemistry and Laboratory Medicine (CCLM),2020

4. Multi-tiered screening and diagnosis strategy for COVID-19: a model for sustainable testing capacity in response to pandemic;MS Pulia;Annals of Medicine,2020

5. Covid-19 mass testing facilities could end the epidemic rapidly;J Peto;BMJ,2020

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3