Expert opinion as priors for random effects in Bayesian prediction models: Subclinical ketosis in dairy cows as an example

Author:

Ni HaifangORCID,Klugkist Irene,van der Drift Saskia,Jorritsma Ruurd,Hooijer GerritORCID,Nielen Mirjam

Abstract

Random effects regression models are routinely used for clustered data in etiological and intervention research. However, in prediction models, the random effects are either neglected or conventionally substituted with zero for new clusters after model development. In this study, we applied a Bayesian prediction modelling method to the subclinical ketosis data previously collected by Van der Drift et al. (2012). Using a dataset of 118 randomly selected Dutch dairy farms participating in a regular milk recording system, the authors proposed a prediction model with milk measures as well as available test-day information as predictors for the diagnosis of subclinical ketosis in dairy cows. While their original model included random effects to correct for the clustering, the random effect term was removed for their final prediction model. With the Bayesian prediction modelling approach, we first used non-informative priors for the random effects for model development as well as for prediction. This approach was evaluated by comparing it to the original frequentist model. In addition, herd level expert opinion was elicited from a bovine health specialist using three different scales of precision and incorporated in the prediction as informative priors for the random effects, resulting in three more Bayesian prediction models. Results showed that the Bayesian approach could naturally take the clustering structure of clusters into account by keeping the random effects in the prediction model. Expert opinion could be explicitly combined with individual level data for prediction. However in this dataset, when elicited expert opinion was incorporated, little improvement was seen at the individual level as well as at the herd level. When the prediction models were applied to the 118 herds, at the individual cow level, with the original frequentist approach we obtained a sensitivity of 82.4% and a specificity of 83.8% at the optimal cutoff, while with the three Bayesian models with elicited expert opinion, we obtained sensitivities ranged from 78.7% to 84.6% and specificities ranged from 75.0% to 83.6%. At the herd level, 30 out of 118 within herd prevalences were correctly predicted by the original frequentist approach, and 31 to 44 herds were correctly predicted by the three Bayesian models with elicited expert opinion. Further investigation in expert opinion and distributional assumption for the random effects was carried out and discussed.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3