Dynamic evolution and scenario simulation of habitat quality under the impact of land-use change in the Huaihe River Economic Belt, China

Author:

Tang Feng,Fu Meichen,Wang LiORCID,Song Wanjuan,Yu Jiangfeng,Wu Yanbin

Abstract

Habitat quality is an important indicator for evaluating the biodiversity provided by ecosystem. Estimating and scenario-simulating the dynamic evolution and future development trends of habitat quality under the influence of land-use change is significant in regional biodiversity conservation, formulating land-use planning, and maintaining the ecological environmental sustainability. In this article, we included the Huaihe River Economic Belt as the area of study because of its vital location in China and applied the CA–Markov and InVEST models to analyze the spatio-temporal evolution of habitat quality and to simulate the future development trends of habitat quality under three different land-use scenarios: fast urban growth scenario, farmland conservation-oriented scenario, and ecological conservation-oriented scenario. The results showed that the land-use change in the Huaihe River Economic Belt was mostly represented by the continuous increase of the built-up area, whereas other land types all declined in area from 1995 to 2015. The land-use changes under these three abovementioned alternative future scenarios with different development orientations were considerably different. The built-up area has been shown to expand rapidly to occupy other land types on a large scale under the fast urban growth scenario. Urban land increased slightly and a large area of rural residential land would be converted into farmland under the farmland conservation-oriented scenario. The built-up area and farmland might decrease while woodland, grassland and water would increase in extent of areas under the ecological conservation-oriented scenario. Habitat quality has been shown to be generally poor, continuing to decline from 1995 to 2015, while its spatial distribution was higher in the southwest and northeast areas and lower in the central regions. The future habitat quality would display a downward trend under the fast urban growth and farmland conservation-oriented scenarios with a further deterioration of the ecological environment, while the ecological conservation-oriented scenario predicted the converse trend that the ecological environment would be improved productively. This study may be useful for understanding the impact of land-use dynamics on biodiversity. The research results can provide a scientific basis for the decision-makers to formulate biodiversity conservation and land management policies.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Program of the Humanities and Social Sciences Research of the Ministry of Education of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3