PET imaging and pharmacological therapy targeting carbonic anhydrase-IX high-expressing tumors using US2 platform based on bivalent ureidosulfonamide

Author:

Iikuni ShimpeiORCID,Watanabe Hiroyuki,Shimizu Yoichi,Nakamoto Yuji,Ono Masahiro

Abstract

Carbonic anhydrase-IX (CA-IX) is attracting much attention as a target molecule for cancer treatment since high expression of CA-IX can lead to a poor prognosis of patients. We previously reported low-molecular-weight 111In/90Y complexes with a bivalent ureidosulfonamide scaffold ([111In/90Y]In/Y-US2) as cancer radiotheranostic agents for single photon emission computed tomography and radionuclide-based therapy targeting CA-IX. Here, we applied the US2 platform to positron emission tomography (PET) imaging and pharmacological therapy targeting CA-IX high-expressing tumors by introducing 68Ga and natIn, respectively. In an in vitro cell binding assay, [67Ga]Ga-US2, an alternative complex of [68Ga]Ga-US2 with a longer half-life, markedly bound to CA-IX high-expressing (HT-29) cells compared with low-expressing (MDA-MB-231) cells. In a biodistribution study with HT-29 and MDA-MB-231 tumor-bearing mice, [67Ga]Ga-US2 showed accumulation in the HT-29 tumor (3.81% injected dose/g at 60 min postinjection) and clearance from the blood pool with time. PET with [68Ga]Ga-US2 clearly visualized the HT-29 tumor in model mice at 60 min postinjection. In addition, the administration of [natIn]In-US2 to HT-29 tumor-bearing mice led to tumor growth delay and prolonged mouse survival, while no critical toxicity was observed. These results indicate that [68Ga]Ga-US2 and [natIn]In-US2 may be useful imaging and therapeutic agents targeting CA-IX, respectively, and that US2 may serve as an effective cancer theranostic platform utilizing CA-IX.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3