Removal of cyanobacteria from a water supply reservoir by sedimentation using flocculants and suspended solids as ballast: Case of Legedadi Reservoir (Ethiopia)

Author:

Habtemariam HannaORCID,Kifle Demeke,Leta Seyoum,Mucci Maíra,Lürling Miquel

Abstract

The massive growth of potentially toxic cyanobacteria in water supply reservoirs, such as Legedadi Reservoir (Ethiopia), poses a huge burden to water purification units and represents a serious threat to public health. In this study, we evaluated the efficiency of the flocculants/coagulants chitosan, Moringa oleifera seed (MOS), and poly-aluminium chloride (PAC) in settling cyanobacterial species present in the Legedadi Reservoir. We also tested whether coagulant-treated reservoir water promotes cyanobacteria growth. Our data showed that suspended solids in the turbid reservoir acted as ballast, thereby enhancing settling and hence the removal of cyanobacterial species coagulated with chitosan, Moringa oleifera seed, or their combination. Compared to other coagulants, MOS of 30 mg/L concentration, with the removal efficiency of 93.6%, was the most effective in removing cyanobacterial species without causing cell lysis. Contrary to our expectation, PAC was the least effective coagulant. Moreover, reservoir water treated with MOS alone or MOS combined with chitosan did not support any growth of cyanobacteria during the first two weeks of the experiment. Our data indicate that the efficacy of a flocculant/coagulant in the removal of cyanobacteria is influenced by the uniqueness of individual lakes/reservoirs, implying that mitigation methods should consider the unique characteristic of the lake/reservoir.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference57 articles.

1. Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities;MN Mohamed;Freshwater Science,2019

2. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment;X He;Harmful algae,2016

3. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network;RM Couture;Science of the total environment,2018

4. Cyanobacterial blooms

5. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors;MA Mowe;Journal of Limnology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3