Theoretical properties of distance distributions and novel metrics for nearest-neighbor feature selection

Author:

Dawkins Bryan A.,Le Trang T.ORCID,McKinney Brett A.ORCID

Abstract

The performance of nearest-neighbor feature selection and prediction methods depends on the metric for computing neighborhoods and the distribution properties of the underlying data. Recent work to improve nearest-neighbor feature selection algorithms has focused on new neighborhood estimation methods and distance metrics. However, little attention has been given to the distributional properties of pairwise distances as a function of the metric or data type. Thus, we derive general analytical expressions for the mean and variance of pairwise distances for Lq metrics for normal and uniform random data with p attributes and m instances. The distribution moment formulas and detailed derivations provide a resource for understanding the distance properties for metrics and data types commonly used with nearest-neighbor methods, and the derivations provide the starting point for the following novel results. We use extreme value theory to derive the mean and variance for metrics that are normalized by the range of each attribute (difference of max and min). We derive analytical formulas for a new metric for genetic variants, which are categorical variables that occur in genome-wide association studies (GWAS). The genetic distance distributions account for minor allele frequency and the transition/transversion ratio. We introduce a new metric for resting-state functional MRI data (rs-fMRI) and derive its distance distribution properties. This metric is applicable to correlation-based predictors derived from time-series data. The analytical means and variances are in strong agreement with simulation results. We also use simulations to explore the sensitivity of the expected means and variances in the presence of correlation and interactions in the data. These analytical results and new metrics can be used to inform the optimization of nearest neighbor methods for a broad range of studies, including gene expression, GWAS, and fMRI data.

Funder

National Institute of General Medical Sciences

William K. Warren Jr. Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining;RJ Urbanowicz;Journal of Biomedical Informatics,2018

2. Relief-Based Feature Selection: Introduction and Review;RJ Urbanowicz;Journal of Biomedical Informatics,2018

3. Theoretical and Empirical Analysis of ReliefF and RReliefF;M Robnik Šikonja;Machine Learning,2003

4. Nearest-neighbor Projected-Distance Regression (NPDR) for detecting network interactions with adjustments for multiple tests and confounding;TT Le;Bioinformatics,2020

5. STatistical Inference Relief (STIR) feature selection;TT Le;Bioinformatics,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3