Accuracy and precision of citizen scientist animal counts from drone imagery

Author:

Wood Sarah A.,Robinson Patrick W.,Costa Daniel P.,Beltran Roxanne S.ORCID

Abstract

Repeated counts of animal abundance can reveal changes in local ecosystem health and inform conservation strategies. Unmanned aircraft systems (UAS), also known as drones, are commonly used to photograph animals in remote locations; however, counting animals in images is a laborious task. Crowd-sourcing can reduce the time required to conduct these censuses considerably, but must first be validated against expert counts to measure sources of error. Our objectives were to assess the accuracy and precision of citizen science counts and make recommendations for future citizen science projects. We uploaded drone imagery from Año Nuevo Island (California, USA) to a curated Zooniverse website that instructed citizen scientists to count seals and sea lions. Across 212 days, over 1,500 volunteers counted animals in 90,000 photographs. We quantified the error associated with several descriptive statistics to extract a single citizen science count per photograph from the 15 repeat counts and then compared the resulting citizen science counts to expert counts. Although proportional error was relatively low (9% for sea lions and 5% for seals during the breeding seasons) and improved with repeat sampling, the 12+ volunteers required to reduce error was prohibitively slow, taking on average 6 weeks to estimate animals from a single drone flight covering 25 acres, despite strong public outreach efforts. The single best algorithm was ‘Median without the lowest two values’, demonstrating that citizen scientists tended to under-estimate the number of animals present. Citizen scientists accurately counted adult seals, but accuracy was lower when sea lions were present during the summer and could be confused for seals. We underscore the importance of validation efforts and careful project design for researchers hoping to combine citizen science with imagery from drones, occupied aircraft, and/or remote cameras.

Funder

Friends of the Seymour Marine Discovery Center

Centor to Advance Mentored, Inquiry-Based Opportunities in Ecology and Conservation

Packard Ocean Science and Technology Endowment

National Science Foundation

Alfred P. Sloan Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Assessing the dynamics of wild populations;L Eberhardt;The Journal of Wildlife Management,1985

2. Marine reserves as a tool for ecosystem-based management: the potential importance of megafauna;SK Hooker;Bioscience,2004

3. Behavioral indicators for conserving mammal diversity;DW Morris;Annals of the New York Academy of Sciences,2009

4. Lessons from monitoring trends in abundance of marine mammals;BL Taylor;Marine Mammal Science,2007

5. Marine mammals as ecosystem sentinels;SE Moore;Journal of Mammalogy,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3