Gαi1 inhibition mechanism of ATP-bound adenylyl cyclase type 5

Author:

Narzi DanieleORCID,van Keulen Siri C.ORCID,Röthlisberger UrsulaORCID

Abstract

Conversion of adenosine triphosphate (ATP) to the second messenger cyclic adenosine monophosphate (cAMP) is an essential reaction mechanism that takes place in eukaryotes, triggering a variety of signal transduction pathways. ATP conversion is catalyzed by the enzyme adenylyl cyclase (AC), which can be regulated by binding inhibitory, Gαi, and stimulatory, Gαs subunits. In the past twenty years, several crystal structures of AC in isolated form and complexed to Gαs subunits have been resolved. Nevertheless, the molecular basis of the inhibition mechanism of AC, induced by Gαi, is still far from being fully understood. Here, classical molecular dynamics simulations of the isolated holo AC protein type 5 and the holo binary complex AC5:Gαi have been analyzed to investigate the conformational impact of Gαi association on ATP-bound AC5. The results show that Gαi appears to inhibit the activity of AC5 by preventing the formation of a reactive ATP conformation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3