Computational modeling of choice-induced preference change: A Reinforcement-Learning-based approach

Author:

Zhu JianhongORCID,Hashimoto Junya,Katahira Kentaro,Hirakawa Makoto,Nakao Takashi

Abstract

The value learning process has been investigated using decision-making tasks with a correct answer specified by the external environment (externally guided decision-making, EDM). In EDM, people are required to adjust their choices based on feedback, and the learning process is generally explained by the reinforcement learning (RL) model. In addition to EDM, value is learned through internally guided decision-making (IDM), in which no correct answer defined by external circumstances is available, such as preference judgment. In IDM, it has been believed that the value of the chosen item is increased and that of the rejected item is decreased (choice-induced preference change; CIPC). An RL-based model called the choice-based learning (CBL) model had been proposed to describe CIPC, in which the values of chosen and/or rejected items are updated as if own choice were the correct answer. However, the validity of the CBL model has not been confirmed by fitting the model to IDM behavioral data. The present study aims to examine the CBL model in IDM. We conducted simulations, a preference judgment task for novel contour shapes, and applied computational model analyses to the behavioral data. The results showed that the CBL model with both the chosen and rejected value’s updated were a good fit for the IDM behavioral data compared to the other candidate models. Although previous studies using subjective preference ratings had repeatedly reported changes only in one of the values of either the chosen or rejected items, we demonstrated for the first time both items’ value changes were based solely on IDM choice behavioral data with computational model analyses.

Funder

Center of Innovation Program

Grant-in-Aid for Scientific Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3