Abstract
Background
Multiple Myeloma (MM) is a heterogeneous, hematological neoplasm that accounts 2% of all cancers. Although, autologous stem cell transplantation and chemotherapy are currently the most effective therapy, it carries a notable hazards, in addition for being non curative. Recently, the Clustered Regular Interspaced Short Palindromic Repeats (CRISPR-cas9) has been successfully tried at the experimental level, for the treatment of several hematological malignancies.
Objectives
We aimed to investigate the in-vitro effect of CRISPR-cas9-mediated knock-out of V-set pre B-cell surrogate light chain 1”VPREB1” gene on the malignant proliferation of primary cultured myeloma cells.
Methods
Bioinformatics’ analysis was performed to explore the gene expression profile of MM, and the VPREB1 gene was selected as a target gene for this study. We knocked-out the VPREB1 gene in primary cultured myeloma cells using CRISPR-cas9, the VPREB1 gene editing efficacy was verified by determining VPREB1 gene expression at both the mRNA and protein levels by qPCR and immunofluorescence, respectively. Furthermore, the cytotoxic effect on primary myeloma cells proliferation was evaluated using cytotoxicity assay.
Results
There was a statistically significant reduction of both VPREB1 mRNA and protein expression levels (p<0.01). knock-out of VPREB1 gene in myeloma cell line resulted in a statistically significant reduction of myeloma cell proliferation.
Conclusion
CRISPR-cas9-mediated knock-out of VPREB1 gene is effective for inhibiting the proliferation of primary myeloma cells. This would provide a basis for a promising therapeutic strategy for patients with multiple myeloma.
Publisher
Public Library of Science (PLoS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献