Artificial intelligence to predict the BRAFV600E mutation in patients with thyroid cancer

Author:

Yoon Jiyoung,Lee Eunjung,Koo Ja Seung,Yoon Jung Hyun,Nam Kee-HyunORCID,Lee Jandee,Jo Young Suk,Moon Hee Jung,Park Vivian Youngjean,Kwak Jin YoungORCID

Abstract

Purpose To investigate whether a computer-aided diagnosis (CAD) program developed using the deep learning convolutional neural network (CNN) on neck US images can predict the BRAFV600E mutation in thyroid cancer. Methods 469 thyroid cancers in 469 patients were included in this retrospective study. A CAD program recently developed using the deep CNN provided risks of malignancy (0–100%) as well as binary results (cancer or not). Using the CAD program, we calculated the risk of malignancy based on a US image of each thyroid nodule (CAD value). Univariate and multivariate logistic regression analyses were performed including patient demographics, the American College of Radiology (ACR) Thyroid Imaging, Reporting and Data System (TIRADS) categories and risks of malignancy calculated through CAD to identify independent predictive factors for the BRAFV600E mutation in thyroid cancer. The predictive power of the CAD value and final multivariable model for the BRAFV600E mutation in thyroid cancer were measured using the area under the receiver operating characteristic (ROC) curves. Results In this study, 380 (81%) patients were positive and 89 (19%) patients were negative for the BRAFV600E mutation. On multivariate analysis, older age (OR = 1.025, p = 0.018), smaller size (OR = 0.963, p = 0.006), and higher CAD value (OR = 1.016, p = 0.004) were significantly associated with the BRAFV600E mutation. The CAD value yielded an AUC of 0.646 (95% CI: 0.576, 0.716) for predicting the BRAFV600E mutation, while the multivariable model yielded an AUC of 0.706 (95% CI: 0.576, 0.716). The multivariable model showed significantly better performance than the CAD value alone (p = 0.004). Conclusion Deep learning-based CAD for thyroid US can help us predict the BRAFV600E mutation in thyroid cancer. More multi-center studies with more cases are needed to further validate our study results.

Funder

National Research Foundation of Korea

CMB-Yuhan research grant

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Vision—Radiomics & Pathognomics;Otolaryngologic Clinics of North America;2024-10

2. Development of Personalized Strategies for Precisely Battling Malignant Melanoma;International Journal of Molecular Sciences;2024-05-04

3. Deep Learning Methods for Diagnosing Thyroid Cancer;Journal of Engineering and Science in Medical Diagnostics and Therapy;2024-02-28

4. Analysis of artificial intelligence in thyroid diagnostics and surgery: A scoping review;The American Journal of Surgery;2023-11

5. Machine learning for risk stratification of thyroid cancer patients: a 15-year cohort study;European Archives of Oto-Rhino-Laryngology;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3