The influence of beam delivery uncertainty on dose uniformity and penumbra for pencil beam scanning in carbon-ion radiotherapy

Author:

Li YueORCID,Gao Yunzhe,Liu Xinguo,Shi Jian,Xia Jiawen,Yang Jiancheng,Mao Lijun

Abstract

The dose uniformity and penumbra in the treatment field are important factors in radiotherapy, which affects the outcomes of radiotherapy. In this study, the integrated depth-dose-distributions (IDDDs) of 190 MeV/u and 260 MeV/u carbon beams in the active spot-scanning delivery system were measured and calculated by FLUKA Monte Carlo simulation based on the Heavy Ion Medical Machine (HIMM). Considering the dose distributions caused by secondary particles and scattering, we also used different types of pencil beam (PB) models to fit and compare the spatial distributions of PB. We superposed a bunch of PB to form a 20×20 cm2 treatment field with the double Gaussian and double Gaussian logistic beam models and calculated the influence of beam delivery error on the field flatness and penumbra, respectively. The simulated IDDDs showed good agreement with the measured values. The triple Gaussian and double Gaussian logistic beam models have good fitness to the simulated dose distributions. There are different influences on dose uniformity and penumbra resulting from beam uncertainties. These results would be helpful for understanding carbon ion therapy, and physical therapists are more familiar with beam characteristics for active scanning therapy, which provides a reference for commissioning and optimization of treatment plans in radiotherapy.

Funder

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Charged particles in radiation oncology;M Durante;Nat Rev Clin Oncol,2010

2. Irradiation System for HIMAC.;M Torikoshi;Journal of radiation research,2007

3. Magnetic scanning system for heavy ion therapy.;T Haberer;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1993

4. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy;L Grevillot;Physics in Medicine and Biology,2015

5. Precise magnetic field control of the scanning magnets for the APTRON beam delivery system;C-H Miao;Nuclear Science and Techniques,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3