Crystallization of carboplatin-loaded onto microporous calcium phosphate using high-vacuum method: Characterization and release study

Author:

Savicki CristianeORCID,Camargo Nelson Heriberto Almeida,Gemelli Enori

Abstract

Drug delivery systems are a new approach to increase therapeutic efficacy and to reduce the side effects of traditional treatments. Calcium phosphates (CaPs) have been studied as drug delivery systems, especially in bone diseases. However, each system has some particularities that depend on the physical and chemical characteristics of the biomaterials and drug interaction. In this work, granulated CaPs were used as a matrix for loading the anticancer drug carboplatin using the high-vacuum method. Five compositions were applied: hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), biphasic HAp 60%/β-TCP 40% (BCP), β-TCP/MgO nanocomposite, and β-TCP/SiO2 nanocomposite. Carboplatin drug in 50, 60, and 70 mg/g was precipitated on the surface of CaPs. Morphological, chemical and surface modifications in the carboplatin-CaPs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), backscattered electron microscopy (BSE), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared (FT-IR), and Raman spectroscopy. The characterization of the CaP-carboplatin biomaterials showed heterogeneous crystalline precipitation of the drug, and no morphological modifications of the CaPs biomaterials. The in vitro release profile of carboplatin from CaPs was evaluated by the ultraviolet-visible (UV-Vis) method. The curves showed a burst release of upon 60% of carboplatin loaded followed by a slow-release of the drug for the time of the study. The results were typical of a low-interaction system and physisorption mechanism. The high-vacuum method permitted to load the high amount of carboplatin drug on the surface of the biomaterials despite the low interaction between carboplatin and CaPs.

Funder

Foundation for the Support of the Scientific and Technological Research of Santa Catarina State

Coordination for the Improvement of Higher Education Personnel – Brasil (CAPES) – Finance Code 001

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3