Control of hybrid electromagnetic bearing and elastic foil gas bearing under deep learning

Author:

Du XiangxiORCID,Sun Yanhua

Abstract

The hybrid electromagnetic and elastic foil gas bearing is explored based on the radial basis function (RBF) neural network in this study so as to improve its stabilization in work. The related principles and structure of hybrid electromagnetic and elastic foil gas bearings is introduced firstly. Then, the proportional, integral, and derivative (PID) bearing controller is introduced and improved into two controllers: IPD and CPID. The controllers and hybrid bearing system are controlled based on the RBF neural network based on deep learning. The characteristics of the hybrid bearing system are explored at the end of this study, and the control simulation research is developed based on the Simulink simulation platform. The effects of the PID, IPD, and CIPD controllers based on the RBF neural network are compared, and they are also compared based on the traditional particle swarm optimization (PSO). The results show that the thickness, spread angle, and rotation speed of the elastic foil have great impacts on the bearing system. The proposed CIPD bearing control method based on RBF neural network has the shortest response time and the best control effect. The controller parameter tuning optimization starts to converge after one generation, which is the fastest iteration. It proves that RBF neural network control based on deep learning has high feasibility in hybrid bearing system. Therefore, the results provide an important reference for the application of deep learning in rotating machinery.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3