A 4D continuous representation of myocardial velocity fields from tissue phase mapping magnetic resonance imaging

Author:

Bendiksen Bård A.ORCID,McGinley Gary,Sjaastad Ivar,Zhang Lili,Espe Emil K. S.

Abstract

Myocardial velocities carry important diagnostic information in a range of cardiac diseases, and play an important role in diagnosing and grading left ventricular diastolic dysfunction. Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sampling of the myocardium’s underlying smooth and continuous velocity field. This paper presents a post-processing framework for constructing a spatially and temporally smooth and continuous representation of the myocardium’s velocity field from TPM data. In the proposed scheme, the velocity field is represented through either linear or cubic B-spline basis functions. The framework facilitates both interpolation and noise reducing approximation. As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic) velocity fields created by adding different levels of noise to an original TPM data. The framework’s ability to restore the original velocity field was investigated using Bland-Altman statistics. Moreover, we calculated myocardial material point trajectories through temporal integration of the original and synthetic fields. The effect of noise reduction on the calculated trajectories was investigated by assessing the distance between the start and end position of material points after one complete cardiac cycle (end point error). We found that the Bland-Altman limits of agreement between the original and the synthetic velocity fields were reduced after application of the framework. Furthermore, the integrated trajectories exhibited consistently lower end point error. These results suggest that the proposed method generates a realistic continuous representation of myocardial velocity fields from noisy and discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the original and synthetic fields, compared to Cubic B-splines. The end point errors were also consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to be more suitable for TPM data.

Funder

KG Jebsen Center for Cardiac Research

Familien Blix’ fond til fremme av medisinsk forskning

Olav Raagholt og Gerd Meidel Raagholts stiftelse for forskning

Helse Sør-Øst RHF

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3