Soil C, N, P and K stoichiometry affected by vegetation restoration patterns in the alpine region of the Loess Plateau, Northwest China

Author:

Liu Ruosha,Wang DongmeiORCID

Abstract

The Grain-for-Green project is an important ecological restoration measure to address the degradation of alpine ecosystems in China, which has an important impact on the ecological stoichiometry of soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K). However, soil stoichiometry changes under different vegetation restoration patterns and at different soil depths remain poorly understood in the alpine region of the Loess Plateau. To clarify these soil stoichiometry changes, a 0–60 cm soil profile was sampled from two typical vegetation restoration patterns: grassland (GL) and forestland (FL), including Picea crassifolia (PC), Larix principis-rupprechtii (LR), Populus cathayana (PR) and Betula platyphylla (BP). The control was a wheat field (WF). In all soil layers, the soil organic carbon (SOC), total nitrogen (TN), soil available nitrogen and potassium (AN and AK, respectively) and C:P, C:K, N:P and N:K ratios of FL were higher than those of GL and WF. The TN content and N:P and N:K ratios of GL were higher than those of WF in each soil layer. Additionally, the soil nutrients (except TK) of all vegetation types and stoichiometry of PR and GL (except the N:P ratio of GL) were greater at 0–20 cm than at 20–60 cm. Moreover, the SOC and TN showed the strongest correlation with the soil stoichiometry (except P:K ratio); thus, C and N had the greatest effect on the soil stoichiometry. Furthermore, soil fertility was limited by N. Our results indicated that different vegetation restoration patterns and soil depths had significant effects on the soil nutrients and stoichiometry in the alpine region of the Loess Plateau. The recovery of farmland to forestland promoted better improvements of soil nutrients, and PR had the most significant positive effect on soil surface nutrients.

Funder

the National Key Research and Development Plan Projects of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3